Indexed by:
Abstract:
Smoke detection plays a crucial role in the safety production of petrochemical enterprises and fire prevention. Image-based machine learning and deep learning methods have been widely studied. Recently, many works have applied the transformer to solve problems faced by computer vision tasks (such as classification and object detection). To our knowledge, there are few studies using the transformer structure to detect smoke. In order to research the application potential and improve the performance of the transformer in the smoke detection field, we propose a model consisting of two transformer encoders and a convolutional neural network (CNN) module. The first transformer encoder can be used to establish the global relationship of an image, and the CNN structure can provide additional local information to the transformer. The fusion of global information and local information is conducive to the second transfer encoder to make better decisions. Experiments results on large-size dataset for industrial smoke detection illustrate the effectiveness of the proposed model. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 1865-0929
Year: 2023
Volume: 1766 CCIS
Page: 121-135
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: