Indexed by:
Abstract:
River turbidity is an important index to evaluate the quality of water environment, which is of great significance to environmental monitoring. Most of the existing monitoring methods rely on turbidity labels measured by river water quality monitoring stations. However, due to the limitation of spatial distribution of water quality monitoring stations, those turbidity data outside the monitoring range are difficult to obtain and the correlation of turbidity data between monitoring stations is poor. Using such data directly might weaken the generalization ability that the model has. In this paper, we propose a new river turbidity monitoring model based on semi-supervised transfer learning (RTMM-SSTL) to solve these problems. First, in the pre-training stage, we innovatively propose a semi-supervised training method combined with big data with pseudo labels for river turbidity monitoring to solve the problem of weakened model generalization ability. Then, the model is fine-tuned using GEE hyper spectral data with ground truth to further improve the monitoring capability of the model. Experiments conducted on the river turbidity monitoring task demonstrate that the proposed model is superior to the advanced learning models, and further proves that our semi-supervised transfer learning method performs better than the state-of-the-art supervision models. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 1865-0929
Year: 2023
Volume: 1766 CCIS
Page: 44-58
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: