Abstract:
针对间歇过程中因忽略数据在阶段划分中的非线性,导致故障监测精度低的问题,提出一种基于扩散距离的信息熵模糊C均值(DDEFCM)多阶段长短期记忆网络的自动编码器(LSTM-AE)间歇过程故障监测方法.首先为了自动识别聚类个数,利用信息熵描述批处理后的二维时间片矩阵.再采用扩散距离对模糊C均值聚类(FCM)算法进行改进,解决欧式距离不能表征数据非线性的问题,有效划分间歇过程的稳定阶段,然后利用轮廓系数划分过渡阶段.最后建立多阶段LSTM-AE监测模型.利用青霉素发酵数据和大肠杆菌实际生产数据对该方法进行验证,结果表明所提方法不仅可以提升阶段划分性能,还能更加准确地进行故障监测.
Keyword:
Reprint Author's Address:
Email:
Source :
高校化学工程学报
ISSN: 1003-9015
Year: 2023
Issue: 1
Volume: 37
Page: 120-130
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: