Abstract:
[研究目的]为提高专利知识图谱构建的自动化水平,并实现知识服务与交易服务的融合,提出了面向供需信息挖掘的供需知识图谱(PSD-KG)的构建思路。[研究方法]知识图谱规划方面,对专利交易涉及实体及关系进行了拓展,规划了共由12类实体和14类关系组成的PSD-KG。知识图谱构建方法上,建立专利领域词典以实现语料自动化标注,并提出了基于BERT-BiLSTM-CRF模型的语义实体识别方法。[研究结论]与传统的CRF、BiLSTM-CRF模型对比发现,该文模型的准确率、召回率和F1指数均高于85%,验证了方法的有效性;以燃料电池领域为例构建PSD-KG,通过技术供需热点识别及演化研究,识别出三类技术热点,包括:持续热门技术点、新兴热门技术点和潜在热点技术;并在交易网络分析、供需信息检索等方面挖掘新应用场景。研究成果也为专利交易推荐提供了知识库。
Keyword:
Reprint Author's Address:
Email:
Source :
情报杂志
Year: 2023
Issue: 03
Volume: 42
Page: 139-150
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 17
Affiliated Colleges: