Indexed by:
Abstract:
Using a hollow-cylinder torsional shear apparatus, we experimentally investigated the development characteristics of excess pore water pressure (EPWP) in saturated marine coral sand. These coral sand specimens were tested under various values of nonplastic fines content (FC), relative density (Dr), and cyclic stress ratio (CSR). A laboratory cyclic torsional shear test under isotropic consolidation showed that the development rate of the EPWP ratio (Ru) versus the number of cycles (N) increased with increasing FC and CSR but decreased with increasing Dr. Additionally, the increase in FC significantly reduced the cyclic resistance ratio (CRR) of marine coral sand. For a given Dr and FC, Ru of the specimens under different CSR was uniquely related to the amplitude of the shear strain (γa). Moreover, a pore pressure evaluation model based on shear strain characteristics was established. The measurements showed that the EPWP model parameter A is a soil-specific constant, and the density-corrected EPWP model parameter B/(Dr)1.5 has a single negative-power relationship with the equivalent skeleton void ratio (esk*. © 2023
Keyword:
Reprint Author's Address:
Email:
Source :
Applied Ocean Research
ISSN: 0141-1187
Year: 2023
Volume: 137
4 . 3 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:19
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: