Abstract:
针对机场延误预测过程中难以提取延误传播时空特征、预测结果受天气扰动大的问题,提出了基于气象因素的时空图卷积网络(meteorology-based spatio-temporal graph convolutional networks,MSTGCN)机场延误预测模型.该模型使用图卷积神经网络(graph convolutional neural network,GCNN)与门控卷积神经网络(ga-ted convolutional neural network,Gated CNN)挖掘机场延误的时空特征,同时加入气象特征提取模块对机场延误时间进行预测.实验结果表明,该模型在中短时预测上的表现均优于其他对比模型;相较于不考虑气象因素的模型,MSTGCN对未来1 h、4 h和12 h预测的平均绝对误差分别降低了 7.03%,7.93%,11.54%,对预测结果起到了极大的修正作用.
Keyword:
Reprint Author's Address:
Email:
Source :
系统工程与电子技术
ISSN: 1001-506X
Year: 2023
Issue: 6
Volume: 45
Page: 1722-1731
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 19
Affiliated Colleges: