Abstract:
目的:为了提高阿尔茨海默病(Alzheimer’s disease,AD)分类的准确率,构建一种基于海马MRI数据的DenseNet和通道注意力模块(channel attention module,CAM)相结合的AD分类模型。方法:首先,通过结构磁共振图像提取海马感兴趣区。其次,通过优化网络结构将三维DenseNet与CAM相结合构建基于海马感兴趣区的AD分类模型(三维CAM-DenseNet模型)。最后,为验证该模型的分类性能,将该模型与多个三维DenseNet模型进行比较,并验证加入纵向数据后对模型分类性能的影响;为评估模型的泛化性,将该模型在3个独立测试集上进行检验。结果:三维CAM-DenseNet模型在区分AD患者与认知正常受试者的分类任务中平均准确率为95.2%、敏感度为91.9%、特异度为97.8%、AUC值为94.9%,优于其他三维DenseNet模型;在轻度认知障碍相关分类任务中,加入纵向数据可以提升模型的分类性能;训练好的模型在3个独立测试集中均表现出良好的泛化性能。结论:构建的三维CAMDenseNet模型分类准确率高、泛化性好,适用于AD分类研究。
Keyword:
Reprint Author's Address:
Email:
Source :
医疗卫生装备
Year: 2023
Issue: 04
Volume: 44
Page: 9-14
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: