Indexed by:
Abstract:
In this paper, we develop a weak Galerkin (WG) finite element method for a linear poroelasticity model where weak divergence and weak gradient operators defined over discontinuous functions are introduced. We establish both the continuous and discrete time WG schemes, and obtain their optimal convergence order estimates in a discrete H1 norm for the displacement and in H1 and L2 norms for the pressure. Finally, we present some numerical experiments on different kinds of meshes to illustrate the theoretical error estimates, and furthermore verify the locking-free property of our proposed method. (c) 2023 IMACS. Published by Elsevier B.V. All rights reserved.
Keyword:
Reprint Author's Address:
Source :
APPLIED NUMERICAL MATHEMATICS
ISSN: 0168-9274
Year: 2023
Volume: 190
Page: 200-219
2 . 8 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:9
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: