• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Farzan, Mahour (Farzan, Mahour.) | Farzan, Mahan (Farzan, Mahan.) | Mirzaei, Yousef (Mirzaei, Yousef.) | Aiman, Sara (Aiman, Sara.) | Azadegan-Dehkordi, Fatemeh (Azadegan-Dehkordi, Fatemeh.) | Bagheri, Nader (Bagheri, Nader.)

Indexed by:

Scopus SCIE

Abstract:

Background: On May 7, 2022, WHO reported a new monkeypox case. By May 2023 over 80,000 cases had been reported worldwide outside previously endemic nations. (This primarily affected the men who have sex with men (MSM) community in rich nations). The present research aims to develop a multi-epitope vaccine for the monkeypox virus (MPXV) using structural and cell surface proteins.Methods: The first part of the research involved retrieving protein sequences. The Immune Epitope Database (IEDB) was then used to analyze the B and T lymphocyte epitopes. After analyzing the sensitizing properties, toxicity, antigenicity, and molecular binding, appropriate linkers were utilized to connect selected epitopes to adjuvants, and the structure of the vaccine was formulated. Algorithms from the field of immunoinformatics predicted the secondary and tertiary structures of vaccines. The physical, chemical, and structural properties were refined and validated to achieve maximum stability. Molecular docking and molecular dynamic simulations were subsequently employed to assess the vaccine's efficacy. Afterward, the ability of the vaccine to interact with toll-like receptors 3 and 4 (TLR3 and TLR4) was evaluated. Finally, the optimized sequence was then introduced into the Escherichia coli (E. coli) PET30A + vector.Results: An immunoinformatics evaluation suggested that such a vaccine might be safe revealed that this vaccine is safe, hydrophilic, temperature- and condition-stable, and can stimulate innate immunity by binding to TLR3 and TLR4.Conclusion: Our findings suggest that the first step in MPXV pathogenesis is structural and cell surface epitopes. In this study, the most effective and promising epitopes were selected and designed through precision servers. Furthermore, through the utilization of multi-epitope structures and a combination of two established adjuvants, this research has the potential to be a landmark in developing an antiviral vaccine against MPXV. However, additional in vitro and in vivo tests are required to confirm these results.

Keyword:

Multi-epitope vaccine Immunoinformatics Molecular dynamics Molecular docking Monkeypox virus (MPXV)

Author Community:

  • [ 1 ] [Farzan, Mahour]Shahrekord Univ Med Sci, Basic Hlth Sci Inst, Med Plants Res Ctr, Shahrekord, Iran
  • [ 2 ] [Farzan, Mahan]Shahrekord Univ Med Sci, Basic Hlth Sci Inst, Med Plants Res Ctr, Shahrekord, Iran
  • [ 3 ] [Farzan, Mahour]Shahrekord Univ Med Sci, Student Res Comm, Shahrekord, Iran
  • [ 4 ] [Farzan, Mahan]Shahrekord Univ Med Sci, Student Res Comm, Shahrekord, Iran
  • [ 5 ] [Mirzaei, Yousef]Cihan Univ Erbil, Dept Med Biochem Anal, Erbil, Kurdistan Regio, Iraq
  • [ 6 ] [Aiman, Sara]Beijing Univ Technol, Fac Environm & Life Sci, Beijing 100124, Peoples R China
  • [ 7 ] [Azadegan-Dehkordi, Fatemeh]Shahrekord Univ Med Sci, Basic Hlth Sci Inst, Cellular & Mol Res Ctr, Shahrekord, Iran
  • [ 8 ] [Bagheri, Nader]Shahrekord Univ Med Sci, Basic Hlth Sci Inst, Clin Biochem Res Ctr, Shahrekord, Iran

Reprint Author's Address:

Show more details

Related Keywords:

Source :

INTERNATIONAL IMMUNOPHARMACOLOGY

ISSN: 1567-5769

Year: 2023

Volume: 123

ESI Discipline: PHARMACOLOGY & TOXICOLOGY;

ESI HC Threshold:14

Cited Count:

WoS CC Cited Count: 9

SCOPUS Cited Count: 9

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 8

Affiliated Colleges:

Online/Total:869/10525031
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.