Indexed by:
Abstract:
The evaluation of pediatric hepatic steatosis and early detection of fatty liver in children are of critical importance. In this paper, a deep learning model based on the convolutional neural network (CNN) of ultrasound backscattered signals, multi-branch residual network (MBR-Net), was proposed for characterizing pediatric hepatic steatosis. The MBR-Net was composed of three convolutional branches. Each branch used different sizes of convolution blocks to enhance the capability of local feature acquisition, and leveraged the residual mechanism with skip connections to guide the network to effectively capture features. A total of 393 frames of ultrasound backscattered signals collected from 131 children were included in the experiments. The hepatic steatosis index was used as the reference standard for diagnosing the steatosis grade, G0-G3. The ultrasound backscattered signals within the liver region of interests (ROIs) were normalized and augmented using a sliding gate method. The gated ROI signals were randomly divided into training, validation, and test sets with the ratio of 8:1:1. The area under the operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE) were used as the evaluation metrics. Experimental results showed that the MBR-Net yields AUCs for diagnosing pediatric hepatic steatosis grade & GE;G1, & GE;G2, and & GE;G3 of 0.94 (ACC: 93.65%; SEN: 89.79%; SPE: 84.48%), 0.93 (ACC: 90.48%; SEN: 87.75%; SPE: 82.65%), and 0.93 (ACC: 87.76%; SEN: 84.84%; SPE: 86.55%), respectively, which were superior to the conventional one-branch CNNs without residual mechanisms. The proposed MBR-Net can be used as a new deep learning method for ultrasound backscattered signal analysis to characterize pediatric hepatic steatosis.
Keyword:
Reprint Author's Address:
Email:
Source :
ULTRASONICS
ISSN: 0041-624X
Year: 2023
Volume: 135
4 . 2 0 0
JCR@2022
ESI Discipline: CLINICAL MEDICINE;
ESI HC Threshold:14
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: