Indexed by:
Abstract:
Microstructure significantly affects materials' physical properties. Predicting and characterizing temporal microstructural evolution is valuable and helpful for understanding the processing-structure-property relationship but is rarely conducted on experimental data for its scarcity, unevenness, and uncontrollability. As such, a self-designed in-situ tensile system in conjunction with a scanning electron microscope was adopted to observe the grain evolution during the tensile process. We then used a deep learning-based model to capture grain growth behavior from the experimental data and characterize grain boundary and orientation evolution. We validated the framework's effectiveness by comparing the predictions and ground truths from quantitative and qualitative perspectives, using data from (1) a tensile experimental dataset and (2) a phase-field simulation dataset. Based on the two datasets, the model's predicted results showed good agreement with ground truths in the short term, and local differences emerged in the long term. This pipeline opened an opportunity for the characterization of microstructure evolution and could be easily extended to other scenarios, such as dendrite growth and martensite transformation. © 2023
Keyword:
Reprint Author's Address:
Email:
Source :
Materials Characterization
ISSN: 1044-5803
Year: 2023
Volume: 204
4 . 7 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:26
Cited Count:
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: