Indexed by:
Abstract:
Due to the anonymity of blockchain, frequent security incidents and attacks occur through it, among which the Ponzi scheme smart contract is a classic type of fraud resulting in huge economic losses. Machine learningbased methods are believed to be promising for detecting ethereum Ponzi schemes. However, there are still some flaws in current research, e.g., insufficient feature extraction of Ponzi scheme smart contracts, without considering class imbalance. In addition, there is room for improvement in detection precision. Aiming at the above problems, this paper proposes an ethereum Ponzi scheme detection scheme through opcode context analysis and adaptive boosting (AdaBoost) algorithm. Firstly, this paper uses the n-gram algorithm to extract more comprehensive contract opcode features and combine them with contract account features, which helps to improve the feature extraction effect. Meanwhile, adaptive synthetic sampling (ADASYN) is introduced to deal with class imbalanced data, and integrated with the Adaboost classifier. Finally, this paper uses the improved AdaBoost classifier for the identification of Ponzi scheme contracts. Experimentally, this paper tests our model in real-world smart contracts and compares it with representative methods in the aspect of F1-score and precision. Moreover, this article compares and discusses the state of art methods with our method in four aspects: data acquisition, data preprocessing, feature extraction, and classifier design. Both experiment and discussion validate the effectiveness of our model. © 2023 CRL Publishing. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Computer Systems Science and Engineering
ISSN: 0267-6192
Year: 2023
Issue: 1
Volume: 47
Page: 1023-1042
2 . 2 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:19
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: