• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Ji, J. (Ji, J..) | Zhang, Y. (Zhang, Y..)

Indexed by:

EI Scopus SCIE

Abstract:

Recently, clinical phenotypic semantic information has begun to play an important role in some brain network classification methods based on deep learning. However, most current methods only consider the phenotypic semantic information of individual brain networks but ignore the potential phenotypic characteristics among group brain networks. To address this problem, we present a deep hashing mutual learning (DHML)-based brain network classification method. Specifically, we first design a separable CNN-based deep hashing learning to extract individual topological features of brain networks and map them into hash codes. Secondly, we construct a group brain network relationship graph based on the similarity of phenotypic semantic information, in which each node is a brain network, and the properties of the nodes are the individual features extracted in the previous step. Then, we adopt a GCN-based deep hashing learning to extract the group topological features of the brain network and map them to hash codes. Finally, the two deep hashing learning models perform mutual learning by measuring the distribution differences between the hash codes to achieve the interaction of individual and group features. The experimental results on the three commonly used brain atlases (AAL Atlas, Dosenbach160 Atlas, and CC200 Atlas) of the ABIDE I dataset show that our proposed DHML method achieves optimal classification performance compared with some state-of-the-art methods. IEEE

Keyword:

Training Deep hashing learning Brain network classification Task analysis Codes Feature extraction Semantics Separable convolution Deep mutual learning Deep learning Brain modeling

Author Community:

  • [ 1 ] [Ji J.]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Faculty of Information Technology, Beijing Artificial Intelligence Institute, Beijing University of Technology, Beijing, China
  • [ 2 ] [Zhang Y.]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Faculty of Information Technology, Beijing Artificial Intelligence Institute, Beijing University of Technology, Beijing, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

IEEE Journal of Biomedical and Health Informatics

ISSN: 2168-2194

Year: 2023

Issue: 9

Volume: 27

Page: 1-11

7 . 7 0 0

JCR@2022

ESI Discipline: COMPUTER SCIENCE;

ESI HC Threshold:19

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 3

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 18

Affiliated Colleges:

Online/Total:476/10554556
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.