Indexed by:
Abstract:
Aspergillus niger is widely applied in the fermentation industry, but produce abundant mycelium residues every year. As a kind of solid waste, mycelium residues seriously affect the environment. How to manage and utilize this solid waste is a problem for the fermentation industry. It was reported that many kinds of biomass could be utilized to produce carbon materials, which would be further used to produce lithium-ion rechargeable batteries (LIBs). Here, porous biochar was prepared from A. niger mycelial residues and further used as an anode for LIBs. Since the A. niger mycelium contains abundant nitrogen (5.29%) from its chitosan-dominated cell wall, and silicon (9.63%) from perlite filter aid, respectively, the biochar presented an excellent cycle stability and rate performance when applied as the anode of LIBs. The conclusion of this research shows the wide application prospect of fungal fermentation residues as carbon precursors in energy storage devices. Meanwhile, this investigation provides an alternative management method for A. niger mycelium residues, with which the mycelium residues could be effectively recycled to avoid resource waste and environmental pollution. © 2023 Elsevier Ltd
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Environmental Management
ISSN: 0301-4797
Year: 2023
Volume: 346
8 . 7 0 0
JCR@2022
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:17
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: