Indexed by:
Abstract:
In order to explore the activity pattern and regularity of public transport passengers, this study constructed multi-day passenger travel activity sequences using three weeks smart card data in Beijing in October 2020. The frequent activity pattern sequences of passengers were mined through the PrefixSpan algorithm, and the similarity measure method of activity patterns was defined based on the longest common subsequence. The day-to-day activity sequence similarity of individual and activity pattern similarities among different passengers were calculated respectively, and passengers were classified according to activity pattern similarities among passengers by using the hierarchical clustering algorithm. The results show that the similarity between workdays and weekends is significantly lower than that within workdays or weekends. In workdays, the activity sequence similarity between Friday and the other days is low. Meanwhile, the activity sequence similarity of the same days in different weeks is high. The result of hierarchical clustering shows that there are four typical activity patterns, including entertainment and shopping orientation, life orientation, work orientation and personal affair orientation. Moreover, the day-to-day activity sequence similarity of passenger with work orientation pattern is higher than that of passenger with other activity patterns. The research results in this paper are helpful to scientifically formulate accurate public transport operation management and service policies. © 2023 South China University of Technology. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of South China University of Technology (Natural Science)
ISSN: 1000-565X
Year: 2023
Issue: 8
Volume: 51
Page: 40-50
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: