Indexed by:
Abstract:
This paper proposed and studied the method of simplifying concrete substructures of the suspen-dome prototype structure in shaking table test scale model. Firstly, a method that replaces complex concrete substructures of the suspen-dome prototype structure with steel substructures in shaking table test scale model was proposed. And then, a dynamic integral scale model considering substructures was established. After that, the natural frequencies of the model were obtained by conducting white noise sweep test. Finally, the numerical scaled model was established by ABAQUS software, and the numerical model of the prototype structure was established by Midas/Gen software. The natural frequency, mode shape, and seismic response of the scale model were compared with the prototype structure. It is observed that the natural frequencies of the test scale model were very close to that of the prototype structure after considering the scale ratio, and the scaled model’s first five modes were basically consistent with that of the prototype structure. Besides, the difference in acceleration response between the two modes is also small. It is proved that in shaking table test, the method of designing the integral scale model of replacing complex concrete substructures of the prototype structure with steel substructures is accurate and effective. The analysis results provides a reference for researchers and designers to more conveniently establish scaled models of suspen-dome structures in shaking table tests. Copyright © 2023 by Zetao Zhao, Suduo Xue and Xiongyan Li. Published by the International Association for Shell and Spatial Structures (IASS) with permission.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of the International Association for Shell and Spatial Structures
ISSN: 1028-365X
Year: 2023
Issue: 2
Volume: 64
Page: 123-133
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: