Indexed by:
Abstract:
In the coded aperture snapshot spectral compressive imaging (CASSI) system, hyperspectral image (HSI) reconstruction methods are employed to recover 3D signals from 2D compressive measurements. Among these methods, although the deep unfolding networks show the advantages of interpretability and high efficiency, they still have the limitations of insufficient feature utilization and low efficiency of information interaction between stages. To solve these problems, in this paper two well-designed techniques, dubbed as dual-domain feature learning and feature memory-enhanced module, are introduced into a deep unfolding network. The former is proposed to enhance the representation ability of deep networks, while the latter is designed to efficiently promote the cross-stage information interaction. Extensive experimental results validate the efficiency and effectiveness of the proposed method. © 2023 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 1945-7871
Year: 2023
Volume: 2023-July
Page: 1589-1594
Language: English
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: