Indexed by:
Abstract:
Explainability has recently been recognized as an increasingly important quality requirement for machine learning systems. Various methods have been proposed by machine learning researchers to explain the results of machine learning techniques. However, analyzing and operationalizing such explainability requirements is knowledge-intensive and time-consuming. This paper proposes an explainability requirements analysis framework using contextual goal models, aiming at systematically and automatically deriving appropriate explainability methods. Specifically, we comprehensively survey and analyze existing explainability methods, associating them with explainability requirements and emphasizing the context for applying them. In such a way, we can automatically operationalize explainability requirements into concrete explainability methods. We conducted a case study with ten participants to evaluate our proposal. The results illustrate the framework's usability for satisfying the explainability requirements of machine learning systems. © 2023 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 0730-3157
Year: 2023
Volume: 2023-June
Page: 1203-1208
Language: English
Cited Count:
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: