Indexed by:
Abstract:
For a nonlinear parabolic distributed parameter system (DPS), a fuzzy boundary sampled-data (SD) control method is introduced in this article, where distributed SD measurement and boundary SD measurement are respected. Initially, this nonlinear parabolic DPS is represented precisely by a Takagi-Sugeno (T-S) fuzzy parabolic partial differential equation (PDE) model. Subsequently, under distributed SD measurement and boundary SD measurement, a fuzzy boundary SD control design is obtained via linear matrix inequalities (LMIs) on the basis of the T-S fuzzy parabolic PDE model to guarantee exponential stability for closed-loop parabolic DPS by using inequality techniques and a LF. Furthermore, respecting the property of membership functions, we present some LMI-based fuzzy boundary SD control design conditions. Finally, the effectiveness of the designed fuzzy boundary SD controller is demonstrated via two simulation examples.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE TRANSACTIONS ON CYBERNETICS
ISSN: 2168-2267
Year: 2023
Issue: 6
Volume: 54
Page: 3565-3576
1 1 . 8 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:19
Cited Count:
WoS CC Cited Count: 9
SCOPUS Cited Count: 10
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: