Indexed by:
Abstract:
To achieve environmental false complaint report detection, a false complaint and report detection model was proposed based on adversarial transfer learning method. First, a long-short term memory (LSTM) network was used as a feature extractor to extract the shared features of Weibo rumors (source domain) and complaint report text (target domain). Second, the domain adaptation was performed by using the adversarial learning method to align the source domain features with the target domain features. Finally, the classification results were output by the classifier, and the network parameters were updated by the classification loss and the domain adaptation loss. Model comparison experiments and ablation experiments were designed, and the F1 value of the model reached 79郾 61%, indicating that the adversarial transfer learning model has good performance and is suitable for application in the the task of detecting environmental false complaints and reports. © 2023 Beijing University of Technology. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Beijing University of Technology
ISSN: 0254-0037
Year: 2023
Issue: 9
Volume: 49
Page: 999-1006
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 13
Affiliated Colleges: