Indexed by:
Abstract:
The multiple objective functions or constraints of dynamic multi-objective optimization problems (DMOPs) generally vary over time. The multi-objective evolutionary algorithm based on decomposition (MOEA/D) not only tracks the entire Pareto optimal front (POF) but also has good performance. In effect, a decision maker (DM) is only cared about part of POF in different environments, which is called region of interest (ROI). To solve this problem, preference weight vector adjustment strategy based dynamic MOEA/D (MOEA/D-DPWA) is proposed. Firstly, the reference vector adjustment strategy is put forward to bring in the preference information of DM into DMO. Then, the dynamic response strategy is implemented, which is designed to regenerate the population near to ROI when environmental dynamics change. Finally, experimental results indicate that MOEA/D-DPWA is valid in tackling DMOPs. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 1865-0929
Year: 2023
Volume: 1869 CCIS
Page: 334-345
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: