Indexed by:
Abstract:
本发明提供了一种基于EDDESN的出水NH4‑N预测方法,包括:获取待测数据;将待测数据输入训练好的深度回声状态网络,得到预测的NH4‑N的浓度;其中,深度回声状态网络的构建方法包括:构建原始网络,原始网络包括:多个输入变量和储备池;相邻的储备池之间加入有PCA映射层;对原始网络进行初始化设置,得到初始化网络;利用奇异值分解的矩阵生成方法和CSO算法对初始化网络进行参数优化,得到优化网络;对优化网络进行训练和测试,得到训练好的深度回声状态网络。本发明解决了现有技术中对于出水NH4‑N预测存在预测精度低、稳定性弱和维护成本高的问题。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN202310273240.8
Filing Date: 2023-03-17
Publication Date: 2024-04-12
Pub. No.: CN116451763B
Applicants: 北京工业大学
Legal Status: 授权
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: