Indexed by:
Abstract:
本发明公开了基于3D插值和3DCNN的运动想象任务分类方法,首先,对运动想象脑电信号进行带通滤波处理;然后,利用快速傅里叶变换(FFT)对每个电极的EEG信号进行频域变换,并求取功率值;接着,将头皮电极的3D坐标投影到3D空间中,并使用3D插值算法对功率值进行插值,生成包含电极的3D真实空间位置信息的3D插值特征图像;最后,设计了一个3D卷积神经网络(3DCNN)来匹配3D插值特征图像的特点进行特征提取和分类。本发明体现了运动想象激活的深度信息,将电极的精确三维空间信息编码到3D插值成像图中,较好地匹配了3DCNN的空间卷积能力。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN202310010193.8
Filing Date: 2023-01-04
Publication Date: 2023-04-11
Pub. No.: CN115952440A
Applicants: 北京工业大学
Legal Status: 实质审查
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: