Indexed by:
Abstract:
The two-sided assembly line becomes very popular in recent years. In this paper, a priority rules-based algorithmic design is developed for optimizing two-sided assembly line. Five elementary rules and 90 composite rules are tested on the benchmark data sets and their performance are provided. Two enumerative principles, which are specific to two-sided assembly lines are proposed to enhance the performance of the rules. Further, priority rules are embedded into a bounded dynamic programming framework to form a deterministic algorithm where the use of a bound can reduce the solution space as the algorithm is advanced stage-by-stage. These approaches offer distinct advantages over the methods proposed in the literature, such as less fine-tuning effort and more stable results. Computational results show that the novel algorithm can generate good solutions efficiently, especially in large sized problems. © 2017, German Academic Society for Production Engineering (WGP).
Keyword:
Reprint Author's Address:
Email:
Source :
Production Engineering
ISSN: 0944-6524
Year: 2018
Issue: 1
Volume: 12
Page: 95-108
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 12
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: