Indexed by:
Abstract:
本发明公开了一种基于领域对抗自适应的跨领域文本情感分类方法,该方法包括:输入源领域和目标领域样本的词向量矩阵、类别标签和领域标签;利用基于卷积神经网络的特征提取模块,提取样本的低层特征;在主任务模块构建基于源领域和目标领域分布一致性的约束,将低层样本映射到再生核希尔伯特空间,学习具有可转移性的高层特征;将源领域的高层特征输入类别分类器,在减小领域差异的基础上,保证分类器对样本具备类别判别性;在辅助任务模块构建基于对抗学习的领域不变性约束,将低层特征输入具有对抗性质的领域分类器,令分类器尽可能无法判别样本所属领域,从而提取具有领域不变性的高层特征,有效解决了源领域分类器到目标领域的迁移问题。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明授权
Patent No.: CN201811263266.X
Filing Date: 2018-10-28
Publication Date: 2022-03-15
Pub. No.: CN109492099B
Applicants: 北京工业大学
Legal Status: 授权 ; 权利转移
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: