Indexed by:
Abstract:
本发明公开了一种基于生成对抗网络和k‑近邻算法提高入侵检测性能的过采样方法,用于提高入侵检测的性能,具体包括:对原始数据进行数值化和归一化处理;基于WGAN‑GP构建生成模型并利用少数类攻击样本和随机噪声对其训练,使生成器对攻击分布进行建模,从而生成攻击样本;采用k‑近邻算法过滤生成攻击样本中的噪声;最后,利用方差分析对数据的字段属性进行重要性排序,根据排序结果进行特征选择,去除不必要的特征,最终得到过采样后的训练集;利用本发明生成的过采样后的训练集能够有效提升入侵检测模型的性能。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN202111409785.4
Filing Date: 2021-11-24
Publication Date: 2024-06-04
Pub. No.: CN114091661B
Applicants: 北京工业大学;;绿盟科技集团股份有限公司
Legal Status: 授权
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: