Indexed by:
Abstract:
本发明公开了一种基于改进降噪自动编码器的小于胎龄儿预测方法,包括:预处理小于胎龄儿数据中的文本特征和非文本特征;基于改进的降噪自动编码器进行无监督学习,得到多个特征集;利用深度神经网络进行有监督学习微调模型参数;将训练好的模型对测试集进行预测,从而得到最终的分类结果。其中改进的降噪自动编码器在输入层进行0到2倍之间的按照正态随机数随机变化,采用改进的降噪自动编码器可以很好的将小于胎龄儿数据中的高维特征进行降维以及非线性抽象,同时改进的“降噪”方法提高了自动编码器学习到的特征多样性和鲁棒性;本发明提高了对小于胎龄儿数据预测的准确率,具有较高的实用意义。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明授权
Patent No.: CN201810245169.1
Filing Date: 2018-03-23
Publication Date: 2021-10-08
Pub. No.: CN108447565B
Applicants: 北京工业大学
Legal Status: 授权
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: