• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

黄志清 (黄志清.) | 曲志伟 (曲志伟.)

Indexed by:

incoPat zhihuiya

Abstract:

本发明公开了基于深度强化学习的无人驾驶分层运动决策控制方法,以“元动作决策‑车辆控制”层次化运动决策控制模型为载体实现的。通过对驾驶行为的抽象分解和对影响驾驶行为的环境因素分析,以将运动决策控制过程分解为“元动作决策‑车辆控制”的模式实现的,元动作决策属于离散型决策问题,利用DQN深度强化学习算法建立一个由动态驾驶信息到元动作的端到端模型。车辆控制属于连续型动作输出,采用DDPG深度强化学习算法建立一个从道路信息与元动作,映射到油门、刹车和方向盘控制量的端到端模型,神经网络的搭建使用PyTorch深度学习框架,选择的开发语言是Python,模型通过接收驾驶行为指令并结合环境状态信息,输出车辆的控制量。

Keyword:

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Related Article:

Patent Info :

Type: 发明申请

Patent No.: CN202110533120.8

Filing Date: 2021-05-17

Publication Date: 2021-08-17

Pub. No.: CN113264043A

Applicants: 北京工业大学

Legal Status: 驳回

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 8

Affiliated Colleges:

Online/Total:517/10577418
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.