Indexed by:
Abstract:
本发明涉及基于知识图谱的推荐算法性能优化的方法,解决推荐系统可解释性、缓解冷启动并提高算法准确性的方法。首先解决算法的可解释性问题:通过对原始数据集进行预处理,构建知识图谱,利用知识图谱元路径提取技术得到路径信息,输入到循环神经网络GRU中,并添加注意力机制和平均池化层,对不同路径进行重要性区分,得出模型预测向量。其次缓解算法的冷启动问题:对用户和物品的节点属性信息进行相乘,得出属性融合向量。将两部分向量结果以3:7的比例进行结合,利用交叉熵损失函数对模型进行训练,得出预测结果。经实验得出:与基于GRU模型的推荐算法相比,算法的准确性提高2.3%,与传统矩阵分解模型相比,准确性提高5.1%。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN202011455909.8
Filing Date: 2020-12-10
Publication Date: 2024-02-02
Pub. No.: CN112417306B
Applicants: 北京工业大学
Legal Status: 授权
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 16
Affiliated Colleges: