Indexed by:
Abstract:
本发明公开了一种自适应的非对称量化的深度神经网络模型压缩方法,该方法包括:在深度神经网络训练时,每一个批次的训练过程,在前向传播开始计算之前,将网络的每一层浮点权重自适应的量化为非对称的三元或四元值;并在反向传播更新参数阶段,使用原始的浮点型网络权重进行参数更新;最后对训练完成的量化深度神经网络进行压缩存储。本发明降低了深度神经网络的参数冗余程度,并对剩余参数实现自适应的量化,对网络模型进行极大限度的压缩,提升了量化方法在深度网络及大数据集上的识别准确率。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明授权
Patent No.: CN201911269550.2
Filing Date: 2019-12-11
Publication Date: 2020-11-24
Pub. No.: CN110942148B
Applicants: 北京工业大学
Legal Status: 授权
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: