Indexed by:
Abstract:
一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法既属于控制领域,又属于水处理领域。针对当前污水处理过程中出水氨氮浓度测量具有时滞性、成本高、精度低等问题,本发明利用一种自组织递归模糊神经网络实现对关键水质参数氨氮浓度的预测,解决了出水氨氮浓度难以测量的问题;结果表明该自组织递归模糊神经网络能够自适应改变网络结构与参数,从而实现快速、准确地预测污水处理出水氨氮的浓度,有利于提升污水处理过程出水氨氮的浓度质量监控水平和加强城市污水处理厂精细化管理。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN202010132329.9
Filing Date: 2020-02-29
Publication Date: 2024-03-08
Pub. No.: CN111354423B
Applicants: 北京工业大学
Legal Status: 授权
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: