Indexed by:
Abstract:
本发明公开了基于隐马尔可夫模型的英文简历关键字段抽取方法,包括:收集英文简历,将收集的英文简历分为训练样本和测试样本;预处理训练样本,并对简历文本序列做隐含状态标记;获取字符字典;计算出隐马尔可夫模型参数初值;使用Baum‑Welch算法对隐马尔可夫模型参数重估,得到一个训练过的隐马尔可夫模型;预处理测试样本;根根据训练过的隐马尔可夫模型,使用维特比算法将测试样本简历标记出最大概率的隐含状态序列。本发明使用隐马尔可夫模型的维特比算法,不仅适应性好、抽取精度较高,而且不需大规模的词典集与规则集,具有很强的实用性。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明授权
Patent No.: CN201610189293.1
Filing Date: 2016-03-29
Publication Date: 2019-11-15
Pub. No.: CN105912570B
Applicants: 北京工业大学
Legal Status: 未缴年费
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: