• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

谢启伟 (谢启伟.)

Indexed by:

incoPat zhihuiya

Abstract:

一种基于Bagging PLS和PCA的降维方法属于模式识别领域,具体为一种基于Bagging Partial Least Squares(Bagging偏最小二乘, Bagging PLS)和Principal Component Analysis(主成分分析,PCA)的降维方法。根据原始数据集生成子训练集并求得PLS回归系数向量;把PLS回归系数向量组成的矩阵作为PCA算法的输入以生成最终的Principal Model Analysis(主模型分析,PMA)模型。与传统的降维方法PLS, Bagging PLS,LDA(Linear discriminant analysis)和PLS‑LDA相比,PMA在UCI中常规高维数据集,小样本、不平衡高维数据集和Raman光谱高维数据集上进行降维,能获得更高的分类准确率,并且性能更稳定。

Keyword:

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Related Article:

Patent Info :

Type: 发明申请

Patent No.: CN201910052120.9

Filing Date: 2019-01-21

Publication Date: 2019-06-07

Pub. No.: CN109858535A

Applicants: 北京工业大学

Legal Status: 撤回-视为撤回

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:442/10597962
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.