Indexed by:
Abstract:
一种基于Bagging PLS和PCA的降维方法属于模式识别领域,具体为一种基于Bagging Partial Least Squares(Bagging偏最小二乘, Bagging PLS)和Principal Component Analysis(主成分分析,PCA)的降维方法。根据原始数据集生成子训练集并求得PLS回归系数向量;把PLS回归系数向量组成的矩阵作为PCA算法的输入以生成最终的Principal Model Analysis(主模型分析,PMA)模型。与传统的降维方法PLS, Bagging PLS,LDA(Linear discriminant analysis)和PLS‑LDA相比,PMA在UCI中常规高维数据集,小样本、不平衡高维数据集和Raman光谱高维数据集上进行降维,能获得更高的分类准确率,并且性能更稳定。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN201910052120.9
Filing Date: 2019-01-21
Publication Date: 2019-06-07
Pub. No.: CN109858535A
Applicants: 北京工业大学
Legal Status: 撤回-视为撤回
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: