Indexed by:
Abstract:
本发明涉及一种基于复杂网络特性及神经网络聚类挖掘用户兴趣的方法,主要从以下三方面进行设计,1)构建复杂网络模型,2)确定节点重要性指标,3)神经网络聚类;本方法将复杂网络模型应用到用户软件兴趣的挖掘中,建立用户使用软件的复杂网络,并使用节点的度、聚集系数、节点介数和节点的概率特性指标确定节点的重要性排序,形成用户兴趣集,再利用神经网络模型挖掘兴趣集的聚类,确定用户最终兴趣集,为挖掘用户兴趣模型提供了一种新的方法,并且将用户软件兴趣的挖掘精确性大幅提高,同时这种方法可以对用户的多种兴趣进行挖掘。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明授权
Patent No.: CN201610056077.X
Filing Date: 2016-01-27
Publication Date: 2019-05-17
Pub. No.: CN105740381B
Applicants: 北京工业大学
Legal Status: 未缴年费
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 28
Affiliated Colleges: