Indexed by:
Abstract:
Variational Auto-Encoder (VAE) is an important probabilistic technology to model 1D vectorial data. However, when applying VAE model to 2D image, vectorization is necessary. Vectorization process may lead to dimension curse and lose valuable spatial information. To avoid these problems, we propose a novel VAE model based on matrix variables named as Matrix-variate Variational Auto-Encoder (MVVAE). In this model, input, hidden and latent variables are all in matrix form, therefore inherent spatial structure of 2D images can be maintained and utilized better. Especially, the latent variable is assumed to follow matrix Gaussian distribution which is more suitable for describing 2D images. To solve the weights and the posterior of latent variable, the variational inference process is given. The experiments are designed for three real-world application: reconstruction, denoising and completion. The experimental results demonstrate that MVVAE shows better performance than VAE and other probabilistic methods for modeling and processing 2D data. (C) 2020 Elsevier Inc. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION
ISSN: 1047-3203
Year: 2020
Volume: 67
2 . 6 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:132
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3