Indexed by:
Abstract:
Blind image deconvolution aims to recover the latent sharp image from a blurry image when the blur kernel is unknown. Since blind deconvolution is an underdetermined problem, existing methods take advantage of various prior knowledge directly or indirectly. In this article, we propose a single image blind deconvolution method based on sparse representation and structural self-similarity. In our method, we add the image sparsity prior and structural self-similarity prior to the blind deconvolution objective function as regularization constraints, and we utilize the structural self-similarity between different image scales by taking the down-sampled version of observed blurry image as the sparse representation dictionary training set so that the sparsity of the latent sharp image under this dictionary can be ensured. Finally, we estimate the blur kernel and sharp image alternately. Experimental results on both simulated and real blurry images demonstrate that the blur kernels estimated by our method are accurate and robust, and that the restored images have high visual quality with sharp edges. Copyright © 2017 Acta Automatica Sinica. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Acta Automatica Sinica
ISSN: 0254-4156
Year: 2017
Issue: 11
Volume: 43
Page: 1908-1919
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: