Indexed by:
Abstract:
The steel-manufacturing intensive cities (steel cities) in China are facing a difficult position of economic transformation and air pollutant control. In this case, taking Tangshan as the research object, this study intends to simulate the developing trends of steel cities and verify the effect of economic transformation by 2020 to explore the development rule of steel cities. The theories and methods of system dynamics, input-output theory and econometrics were adopted to establish a comprehensive evaluation model based on the detailed analysis of economy-energy-environment (3Es) coupling mechanism in Tangshan. The multi-objective dynamic simulation from 2016 to 2020 was carried out by the comprehensive evaluation model. The simulation results show the gross production of Tangshan would get slow in the period of prediction. Compared with the data in 2016, the gross production increases only 11% in 2020. It even shows a decline of 1.4% in 2019, which conforms to the reality. The steel industry decreased 34.6% during this period, showing that its development was heavily impacted with the target of both economic transformation and air quality improvement. The simulation results are consistent with the real data. The accuracy of the comprehensive evaluation model and reliability of the prediction can be confirmed. It is difficult for Tangshan to achieve the dual goals of economic development and air pollution reduction by 2020 if it maintains the current level of economic structure and pollution control level. Adjustment of industrial structure would be the key way for a more reasonable development. © 2020, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 1863-5520
Year: 2020
Page: 217-227
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: