Abstract:
风电机组所处环境恶劣,导致风电机组易出现故障.利用数据采集与监控(super-visory control and data acquisition,SCADA)数据预测与评估风电机组整体性能,对风电机组维修与维护具有重要意义.因此,通过分析风电场SCADA系统的海量数据,提取表征机组退化信息的特征参数,通过自适应核主元分析(kernel principal component analysis,KPCA)算法建立基于多维度SCADA参数的风电机组状态监测与异常辨识模型.为了避免复杂工况对评估结果的影响,该模型引入一种工况划分方法.最后,通过某凤电场SCADA数据对该模型进行实验验证,并与未进行工况划分的KPCA模型、进行工况划分的PCA模型进行对比.实验结果表明,该模型不但能够准确辨识风电机组的异常状态,且辨识结果更具可靠性.
Keyword:
Reprint Author's Address:
Email:
Source :
控制工程
ISSN: 1671-7848
Year: 2021
Issue: 12
Volume: 28
Page: 2393-2401
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: