Abstract:
针对癫痫病人采集的EEG信号数据维数过高和含有复杂的非线性特征的问题,以及脑医学领域数据标注的成本较高的现状,研究了不同的无监督流形降维方法,并且在公开的癫痫集上对比了13种主流及较新的流形降维算法降维后在低维坐标空间的聚类效果.实验结果表明,与目前主流的其它流形及降维方法相比,基于L-ISOMAP得到的数据点在低维空间的分布有很好的聚类表现,不同类别的数据分界明显.当样本大小不同时,降维后的数据分布在可视化图中仍有一定的规律性,可视化效果明显优于其它的降维方法.
Keyword:
Reprint Author's Address:
Email:
Source :
计算机仿真
ISSN: 1006-9348
Year: 2021
Issue: 11
Volume: 38
Page: 275-279
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 7