Abstract:
Molecular dynamics has been widely used to study the fundamental mechanism of Ni-based superalloys.However,the effect of the potential function and strain rate on mechanical behavior has rarely been mentioned in the previous molecular dynamics studies.In the present work,we show that the potential function of molecular dynamics can dramatically influence the simulation results of single crystal Ni-based superalloys.The microstructure and mechanical behavior of single crystal Ni-based superalloys under four commonly used potential functions are systematically compared.A most suitable potential function for the mechanical deformation is critically selected,and based on it,the role of strain rate on the mechanical deformation is investigated.
Keyword:
Reprint Author's Address:
Email:
Source :
中国物理B(英文版)
ISSN: 1674-1056
Year: 2021
Issue: 8
Volume: 30
Page: 231-236
1 . 7 0 0
JCR@2022
ESI Discipline: PHYSICS;
ESI HC Threshold:72
JCR Journal Grade:3
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: