Indexed by:
Abstract:
The coupling of denitrifying phosphorus removal and Anammox can further reduce the carbon source needed for nitrogen and phosphorus removal, and the stable production of NO2--N is the key to the independent and joint operation of the two processes. Therefore, with low C/N domestic sewage as the research object, flocculent sludge and a small amount of long-term stored aerobic granular sludge were inoculated in the reactor. The short-cut nitrification-denitrification-dephosphorization granular sludge was cultivated in 60 days by two-stage gradient aeration with the stop aeration time (3min: 3min) controlled, and the system denitrification and dephosphorization performance was analyzed in this process. The results show that the average particle size of granular sludge is 841μm and the SVI is 31.23ml/g during the stable period. The particle structure is compact and the settling performance is good. The effluent NO3--N was less than 0.1mg/L, TP was less than 0.7mg/L, NO2--N was more than 15mg/L, which realized the efficient removal of P and accumulation of NO2--N, and could provide a stable NO2--N substrate for subsequent coupling of Anammox. The results of batch experiments showed that 57.63% of the DPAOs in the particles which could use NO2--N as electron acceptor, and the enrichment of DPAOs improved the phosphorus removal ability of the system. High-frequency intermittent gradient aeration can achieve a high coupling between AOB and DPAOS, but it is difficult to achieve NOB suppression only by intermittent aeration. Then, by adding gradient aeration in the front section of "ammonia trough point" to optimize the actual oxygen limiting aeration point, the inhibition of NOB can be enhanced, so as to achieve good accumulation of nitrite. © 2021, Editorial Board of China Environmental Science. All right reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
China Environmental Science
ISSN: 1000-6923
Year: 2021
Issue: 11
Volume: 41
Page: 5125-5132
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: