Indexed by:
Abstract:
Based on the finite element method, the band gap of the phononic crystal in single-sided cylinder local resonance was analyzed, and the influence of structural parameters on the phononic crystal was studied. The results show that the initial frequency of the first complete band gap decreases and the bandwidth increases with the increase of the height of the scatterer. With the increase of the thickness of the substrate, the initial frequency of the single-sided cylindrical phononic crystal increases gradually, the cut-off frequency first increases and then decreases. In addition, based on the classical single-sided cylindrical phononic crystal, two new ternary single-sided cylindrical phononic crystal structures are combined: embedded single-sided cylindrical phononic crystal (Hereinafter referred to as structure Ⅰ) and bonded single-sided cylindrical phononic crystal (Hereinafter referred to as structure Ⅱ). Through the analysis of the band gap characteristics, it is concluded that the two new structures have lower frequency band gap compared with the classical single-sided cylindrical phononic crystals, which is very beneficial for low-frequency vibration and noise reduction. The results of this paper will provide some theoretical guidance for practical engineering application. © 2021, Journal of Synthetic Crystals Press. All right reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Synthetic Crystals
ISSN: 1000-985X
Year: 2021
Issue: 7
Volume: 50
Page: 1378-1385
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: