Indexed by:
Abstract:
The Omicron variant of SARS-CoV-2, emerging in November 2021, has rapidly spread worldwide due to its high transmissibility and ability to evade vaccines. It is still not fully under control, and there is a need to enhance our scientific understanding of the Omicron variant. Investigating the influencing factors and the correlated characteristics of the transmission of the Omicron variant remains an important issue in COVID-19 prevention and control. This study utilized data from various sources to investigate Omicron’s transmission factors. Focusing on populous countries like China, France, and the US, a multiple regression model was optimized through the Gauss-Newton method to reveal links between daily Omicron cases and variables like climate, population, healthcare, and vaccination and etc. Results showed vaccination rates, healthcare facility numbers, and population density as pivotal factors influencing transmission. Higher vaccination rates and more healthcare facilities correlated with lower Omicron transmission, while dense population areas experienced higher spread. These findings hold significance for guiding public health decisions and shaping vaccination strategies amidst the Omicron variant’s ongoing impact. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd 2023.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 0302-9743
Year: 2023
Volume: 14305 LNCS
Page: 161-174
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: