Indexed by:
Abstract:
The Bolted joint loosening is challenging to describe with an accurate mathematical model. Therefore, a prediction model of bolted joint loosening was proposed based on a deep learning network. Firstly, the loosening experiments of the bolted joint were carried out with an orthogonal test. And the nonlinear and uncertain characteristics of bolted joint loosening process were further analyzed. Furthermore, a prediction model of bolted joint loosening based on a deep learning network was established. The proposed model was trained and verified using the experimental data. The results showed that compared with the traditional mathematical and regression models, the model could not only obtain the change of the mean value of preload but also describe the confidence interval of the change of preload in the sense of probability synchronously. The experiment data and prediction data are in good agreement, which can be used to validate the rationality of the model.
Keyword:
Reprint Author's Address:
Email:
Source :
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE
ISSN: 0954-4062
Year: 2023
Issue: 9
Volume: 238
Page: 4240-4249
2 . 0 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 14
Affiliated Colleges: