• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Lin, Pengfei (Lin, Pengfei.) | Weng, Jiancheng (Weng, Jiancheng.) (Scholars:翁剑成) | Hu, Song (Hu, Song.) | Alivanistos, Dimitrios (Alivanistos, Dimitrios.) | Li, Xin (Li, Xin.) | Yin, Baocai (Yin, Baocai.) (Scholars:尹宝才)

Indexed by:

SSCI EI Scopus SCIE

Abstract:

Dockless bike sharing plays an important role in complementing urban transportation systems and promoting the sustainable development of cities worldwide. To improve system operational efficiency, it is critical to study the spatiotemporal patterns of dockless bike sharing demand as well as factors influencing these patterns. Based on bicycle trip data from Mobike, Point of Interest (POI) data and smart card data in Beijing, we built a spatially embedded network and implemented the Infomap algorithm, a community detection method to uncover the usage patterns. Then, the Gradient Boosting Decision Tree (GBDT) model was adopted to investigate the effect of the built environment and public transit services by controlling the temporal variables. The spatiotemporal distribution shows imbalanced characteristics. About half of the total trips occur in the morning/evening rush hours and at noon. The community detection results further reveal a polycentric pattern of trip demand distribution and 120 sub-regions with a significant difference in connection strength and scale. The result of the GBDT model indicates that factors including subway ridership, bus ridership, hour, residence density, office density have considerable impacts on trip demand, contributing about 62.6% of the total influence. Factors also represent complex nonlinear relationships with dockless bike sharing usage. The effect ranges of each factor were identified, it indicates rebalancing schemes could be changed according to spatial location. These findings may help planners and policymakers to determine the reasonable scale of bike deployment and improve the efficiency of redistribution in local regions while reducing rebalance costs.

Keyword:

Dockless bike sharing system Bicycles Spatiotemporal phenomena Urban areas community detection Public transportation gradient boosting decision tree built environment spatiotemporal patterns Roads Meteorology

Author Community:

  • [ 1 ] [Lin, Pengfei]Beijing Univ Technol, Key Lab Transportat Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Weng, Jiancheng]Beijing Univ Technol, Key Lab Transportat Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Hu, Song]Beijing Univ Technol, Key Lab Transportat Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Yin, Baocai]Beijing Univ Technol, Key Lab Transportat Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Alivanistos, Dimitrios]Elsevier BV, NL-1643 NX Amsterdam, Netherlands
  • [ 6 ] [Li, Xin]Minist Transport Peoples Republ China, Res Inst Highway, Beijing 100088, Peoples R China

Reprint Author's Address:

  • 翁剑成

    [Weng, Jiancheng]Beijing Univ Technol, Key Lab Transportat Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

IEEE ACCESS

ISSN: 2169-3536

Year: 2020

Volume: 8

Page: 66139-66149

3 . 9 0 0

JCR@2022

Cited Count:

WoS CC Cited Count: 43

SCOPUS Cited Count: 39

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Online/Total:609/10551454
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.