Indexed by:
Abstract:
Since multi-way kernel principal component analysis (MKPCA) is usually inadequate in monitoring nonlinear and multimodal faults of batch production processes, a new method based on physical information entropy was proposed for fault monitoring (named multiple sub-stage multi-way kernel entropy component analysis (MSMKECA)). The data was first mapped from low-dimensional space to high-dimensional space via kernel mapping. Different steady and transitional stages of batch processes were then divided by calculating the similarity index of data matrices according to the structure information entropy in the high-dimensional feature space. Moreover, fixed covariance was replaced by time-varying covariance in transitional stages. Finally, models were built in different stages for batch process monitoring to resolve dynamic, non-linear and multi-stage characteristics of batch processes. The proposed algorithm was applied in a penicillin fermentation simulation system for on-line monitoring and the effectiveness of this method was verified. ©, 2015, Zhejiang University. All right reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Chemical Engineering of Chinese Universities
ISSN: 1003-9015
Year: 2015
Issue: 3
Volume: 29
Page: 650-656
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: