• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Xu, Hui (Xu, Hui.) | Xi, Kaibiao (Xi, Kaibiao.) | Gao, Xin (Gao, Xin.) | Yu, Xiaole (Yu, Xiaole.) | Zheng, Mupeng (Zheng, Mupeng.) | Zhu, Mankang (Zhu, Mankang.) | Hou, Yudong (Hou, Yudong.) (Scholars:侯育冬)

Indexed by:

EI Scopus SCIE

Abstract:

Flexible hybridized nanogenerators (FHNGs) with multifunctional piezocomposites as core can simultaneously harvest waste mechanical energy and thermal energy in the environment, which are expected to replace chemical batteries to realize a long-term self-power supply of wearable electronic devices. However, most reported piezocomposites filled with low-dimensional ferroelectric particles have low piezoelectric charge coefficients together with poor thermal conductivity, which are not conducive to improving the hybridized generation power. In this work, an effective design strategy with respect to a reduced graphene oxide (rGO) nanosheet-decorated three-dimensional (3-D) samarium-doped Pb(Mg1/3Nb2/3)O-3-PbTiO3 (Sm-PMN-PT) piezoceramic skeleton is proposed to build high-performance polydimethylsiloxane (PDMS)-based FHNGs. On the one hand, rGO nanosheets with high electrical conductivity can form an internal electric field network to assist artificial polarization of the piezoceramic skeleton to enhance the piezoelectric properties. On the other hand, rGO nanosheets with high thermal conductivity can form a heat-transfer network to increase the rate of temperature change over time and improve the pyroelectric properties. Thanks to the coupling enhancement effect associated with rGO nanosheets, highly efficient concurrent mechanical energy harvesting (similar to 0.53 V), and thermal energy harvesting (similar to 0.151 V) were realized in the Sm-PMN-PT/PDMS/rGO piezocomposite, and the total output voltage of the FHNG under hybrid excitation was as high as 0.705 V, providing a promising paradigm for the development of high-performance FHNG materials.

Keyword:

flexible hybridized nanogenerators multifield coupling reduced grapheneoxide nanosheets piezoelectricand pyroelectric performance piezoceramic skeleton

Author Community:

  • [ 1 ] [Xu, Hui]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 2 ] [Xi, Kaibiao]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 3 ] [Gao, Xin]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 4 ] [Yu, Xiaole]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 5 ] [Zheng, Mupeng]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 6 ] [Zhu, Mankang]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 7 ] [Hou, Yudong]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

ACS APPLIED NANO MATERIALS

Year: 2023

Issue: 1

Volume: 7

Page: 1120-1129

5 . 9 0 0

JCR@2022

Cited Count:

WoS CC Cited Count: 5

SCOPUS Cited Count: 5

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 10

Affiliated Colleges:

Online/Total:2190/10895627
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.