• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Jia, Zhen (Jia, Zhen.) | Zheng, Hong (Zheng, Hong.) (Scholars:郑宏)

Indexed by:

Scopus SCIE

Abstract:

The main challenge in the analysis of unconfined seepage flow is that the position of free surfaces is unknown a priori, which needs to be determined through a series of iterative processes. The numerical manifold method (NMM) is a promising method which uses a dual cover system consisting of both mathematical and physical covers. Compared with those traditional methods, NMM is characterized by meshing convenience, approximation accuracy, and being capable of coping with free boundary value problems. Unlike the traditional NMM where the material interface participates in cutting the mathematical cover while forming the physical cover, the physical patches in this study can contain the material interface. The new weight functions for such physical patches are constructed using the refraction law, followed by the application to the analysis of unconfined seepage flow problems. By comparing with analytical or reference solutions of some classic examples, it is validated that the proposed method can accurately locate the free surface, demonstrating its accuracy and convenience in solving unconfined seepage problems.

Keyword:

Refraction law Weight functions Unconfined seepage problems Free surfaces Numerical manifold method

Author Community:

  • [ 1 ] [Jia, Zhen]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Zheng, Hong]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Zheng, Hong]Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China

Reprint Author's Address:

  • [Zheng, Hong]Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China;;

Show more details

Related Keywords:

Source :

COMPUTERS AND GEOTECHNICS

ISSN: 0266-352X

Year: 2023

Volume: 166

5 . 3 0 0

JCR@2022

Cited Count:

WoS CC Cited Count: 3

SCOPUS Cited Count: 4

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Affiliated Colleges:

Online/Total:477/10577675
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.