Indexed by:
Abstract:
Accurately identifying network intrusion cannot only help individuals and enterprises better deal with network security problems, but also maintain the Internet environment. This work proposes a new hybrid classification method named SABD for network intrusion detection. SABD integrates Stacked sparse contractive autoencoders (SSCA), Attention-based Bidirectional long-term and short-term memory (LSTM), and Decision fusion. Specifically, SSCA is used for extracting features, which are sent to the attention-based bidirectional LSTM for the classification. Besides, an improved optimization algorithm named genetic simulated-annealing-based particle swarm optimization is designed to optimize hyperparameters of SSCA. Finally, the decision fusion algorithm is adopted to integrate classification results of multiple classifiers and yield the final results. Based on experimental results from four different types of data sets, the proposed SABD outperforms its most advanced peers in classification accuracy.
Keyword:
Reprint Author's Address:
Source :
EXPERT SYSTEMS WITH APPLICATIONS
ISSN: 0957-4174
Year: 2023
Volume: 244
8 . 5 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 8
SCOPUS Cited Count: 15
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 13
Affiliated Colleges: