Abstract:
为了提高无标签场景下特征选择的准确率和稳定性,提出了一种基于特征聚类和等距映射的无监督特征选择算法。特征聚类将相似性较高的特征聚成一类,然后结合等距映射和稀疏系数矩阵定义了新的特征得分计量函数。该函数对各特征簇中的特征进行打分,选择出每个类簇中得分最高的代表特征,构成特征子集。在14个广泛应用的数据集上的实验结果表明:本文所提算法能够选择出具有强分类能力的特征,且算法具有很强的泛化性。
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
Year: 2024
Issue: 03
Page: 325-332
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 15
Affiliated Colleges: